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Abstract

Two expanding cavity models (ECMs) are developed for describing indentation deformations of elastic power-law
hardening and elastic linear-hardening materials. The derivations are based on two elastic–plastic solutions for inter-
nally pressurized thick-walled spherical shells of strain-hardening materials. Closed-form formulas are provided for
both conical and spherical indentations, which explicitly show that for a given indenter geometry indentation hardness
depends on Young�s modulus, yield stress and strain-hardening index of the indented material. The two new models
reduce to Johnson�s ECM for elastic-perfectly plastic materials when the strain-hardening effect is not considered.
The sample numerical results obtained using the two newly developed models reveal that the indentation hardness
increases with the Young�s modulus and strain-hardening level of the indented material. For conical indentations
the values of the indentation hardness are found to depend on the sharpness of the indenter: the sharper the indenter,
the larger the hardness. For spherical indentations it is shown that the hardness is significantly affected by the strain-
hardening level when the indented material is stiff (i.e., with a large ratio of Young�s modulus to yield stress) and/or the
indentation depth is large. When the indentation depth is small such that little or no plastic deformation is induced by
the spherical indenter, the hardness appears to be independent of the strain-hardening level. These predicted trends for
spherical indentations are in fairly good agreement with the recent finite element results of Park and Pharr.
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1. Introduction

Indentation tests have been widely used to measure hardness and other material properties including
Young�s modulus, yield stress and strain-hardening index (e.g., Tabor, 1951, 1986; Fischer-Cripps, 2002;
Wei and Hutchinson, 2003; Cheng and Cheng, 2004). The indentation hardness can be determined as
the ratio of applied load to projected area of the indentation, both of which are measured in indentation
tests. For rigid-perfectly plastic materials, it is known that the indentation hardness H is directly related
to the yield stress ry through H = 3ry, which is obtained from the slip line field theory (e.g., Tabor,
1951). Based on Hill�s (1950) solution for the quasi-static expansion of an internally pressurized spherical
shell of an elastic-perfectly plastic material, expanding cavity models (ECMs) have been developed (Marsh,
1964; Hirst and Howse, 1969; Johnson, 1970) to describe indentation responses of various materials.

In Johnson�s ECM (Johnson, 1970), the indenter was assumed to be encapsulated by a hemispherical
hydrostatic core. For conical indentations, the ECM based on the von Mises yield criterion and material
incompressibility assumption predicts (Johnson, 1970)
H
ry

¼ 2

3
1þ ln

1

3

E
ry

cot a

� �� �
; ð1Þ
where H, ry and E are, respectively, the hardness, yield stress and Young�s modulus of the indented mate-
rial, and a is the half included (or cone) angle of a conical indenter.

Because of their simplicity and predictability, the expanding cavity models (ECMs) developed using
solutions for elastic-perfectly plastic shells have been frequently used to characterize indentation deforma-
tions. For example, an ECM based on the Drucker–Prager yield criterion was recently employed to study
indentation responses of pressure sensitive, elastic-perfectly plastic solids to conical and spherical indenta-
tions (Narasimhan, 2004). However, such expanding cavity models have been found to break down for
materials having appreciable strain-hardening characteristics (e.g., Tabor, 1986; Lawn, 1998). As a result,
finite element simulations have been used to study indentation deformations of strain-hardening materials
induced by a sharp indenter (e.g., Giannakopoulos and Suresh, 1999; Zhang and Subhash, 2001; Mata
et al., 2002; Mata and Alcala, 2003) or by a spherical indenter (e.g., Fischer-Cripps, 1997; Mesarovic
and Fleck, 1999; Park and Pharr, 2004). Nevertheless, no analytical formula has been derived for determin-
ing hardness of a strain-hardening material. Therefore, new elastic–plastic ECMs that are capable of incor-
porating the strain-hardening effect on indentation deformations are still in need.

The objective of the current study is to develop two of such new models for describing conical and spher-
ical indentations of elastic power-law hardening and elastic linear-hardening materials, respectively. The
rest of this paper is organized as follows. In Section 2, the solutions for internally pressurized spherical
shells of both elastic power-law hardening and elastic linear-hardening materials are presented. This is fol-
lowed by the development of the two new ECMs in Section 3, which analytically incorporates the strain-
hardening characteristics of materials for the first time. It is shown that the new ECMs can be reduced to
Johnson�s ECM for elastic-perfectly plastic materials when the strain-hardening effect is ignored. In Section
4, the newly developed ECMs are directly applied to conduct a parametric study, where the numerical data
predicted by the new ECMs are also compared to existing finite element results. The paper concludes with a
summary in the fifth and last section.
2. Solutions for internally pressurized spherical shells of strain-hardening materials

In this section, the stress, strain and displacement components in a thick-walled spherical shell of the
inner radius ri and outer radius ro subjected to the internal pressure pi are presented.
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For linearly elastic, power-law hardening plastic materials, the stress–strain relation can be represented
by (e.g., Gao and Wei, 1991; Gao, 1992)
re ¼
Eee ðre 6 ryÞ
kene ðre > ryÞ

�
; ð2Þ
where re and ee are, respectively, the effective stress and the effective strain, n is the strain-hardening expo-
nent (0 6 n 6 1), and k is a material constant related to the yield stress (ry) and Young�s modulus (E) by
k ¼ En=rn�1

y . When n = 0, Eq. (2) recovers the stress–strain relation of elastic-perfectly plastic materials,
and when n = 1, Eq. (2) reduces to the Hooke�s law for linearly elastic materials.

For elastic, linear-hardening plastic materials, the stress–strain relation can be represented by (e.g., Gao,
1993, 1994)
re ¼
Eee ðre 6 ryÞ
ry þ Epðee � eyÞ ðre > ryÞ

�
; ð3Þ
where Ep is the tangent modulus, and ey is the yield strain satisfying ey = ry/E. When Ep = 0, Eq. (3) recov-
ers the stress–strain relation for elastic-perfectly plastic materials, and when Ep = E, Eq. (3) reduces to the
Hooke�s law for linearly elastic materials.

The stress and displacement components in an internally pressurized spherical shell of the elastic power-
law hardening material defined by Eq. (2) have been derived by Gao and Wei (1991) using Hencky�s defor-
mation theory, von Mises� yield criterion and the material incompressibility assumption. The solution of
Gao and Wei (1991) (see also Gao, 2003) gives the stress, strain and displacement components in the plastic
region (ri 6 r 6 rc) of the shell wall as
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where r, h, u denote the coordinates in the spherical coordinate system, and rc is the radius of the elastic–
plastic interface that is related to the internal pressure pi through
pi
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. ð5Þ
The stress components in the elastic region (rc 6 r 6 ro) of the shell wall are given by (Gao and Wei, 1991)
rrr ¼
2ry

3
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� �
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3

r3c
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1þ r3o
2r3

� �
; ð6a; bÞ
and the strain and displacement components in the elastic region have the same expressions as those listed
in Eqs. (4c–e) for the plastic region.

Lamé�s solution for a linearly elastic thick-walled spherical shell and Hill�s solution for an elastic-
perfectly plastic shell, both under an internal pressure, are included in the above solution as two limiting
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cases with n = 1 and n = 0, respectively, as was shown in Gao and Wei (1991). In addition, the quasi-static
expansion of a (small) spherical cavity in a very large medium of the elastic power-law hardening material
can be described by using the solution of Gao and Wei (1991) with ro ! 1. For this particular case, the
solution gives, letting ro ! 1 in Eq. (5),
pi
ry

¼ 2

3
1þ 1

n
rc
ri

� �3n

� 1

" #( )
; ð7Þ
which will be directly employed to develop a new ECM for elastic power-law hardening materials in the
next section.

The solution in the plastic region (ri 6 r 6 rc) of an internally pressurized spherical shell of the elastic
linear-hardening plastic material defined by Eq. (3) is obtained as (see Appendix A)
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where rc is defined by
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Notice that the strain and displacement components in the plastic region (ri 6 r 6 rc) here have the same
expressions as those listed in Eqs. (4c–e) except that rc involved in the expressions is now defined by Eq.
(9) (rather than Eq. (5)).

Once again, Lamé�s solution for a linearly elastic thick-walled spherical shell and Hill�s solution for an
elastic-perfectly plastic shell, both internally pressurized, can be recovered from the solution listed in Eqs.
(8a–e) and (9) as two specific cases with Ep/E = 1 and Ep/E = 0, respectively. Also, the quasi-static expan-
sion of a (small) spherical cavity in a very large medium of the elastic linear-hardening material can be
described by using the afore-mentioned solution with ro ! 1. For this case, the solution gives, letting
ro ! 1 in Eq. (9),
pi
ry

¼ 2
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; ð10Þ
which will be directly used in the next section to develop a new ECM for elastic linear-hardening materials.
3. Expanding cavity models for elastic strain-hardening materials

In the expanding cavity model for elastic-perfectly plastic materials developed by Johnson (1970) based
on the earlier studies of Marsh (1964) and Hirst and Howse (1969), the indentation process is idealized by
encasing the contacting surface of the indenter in a hemispherical hydrostatic core of the radius a, which is
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Fig. 1. Schematic of (a) conical indentation (b) spherical indentation with hydrostatic core radius a and plastic zone outer radius rc.
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surrounded by an incompressible hemispherical plastic zone of the outer radius rc (see Fig. 1). This plastic
zone is, in turn, constrained by an elastic region. An increment of penetration of the indenter is accompa-
nied by a radial displacement of the core in the amount of da. The volume displaced by the movement of
the indenter (and thus of the core) is accommodated by a radial expansion (drc) of the plastic zone and is
eventually taken up by the elastic region. The pressure acting on the interface between the hydrostatic core
and the plastic zone is taken to be equal to the mean indentation pressure, thereby measuring the hardness.
This model is based on the experimentally observed fact (e.g., Marsh, 1964; Hirst and Howse, 1969) that the
plastic zone beneath a Brinell-ball indenter or a blunt Vickers-pyramidal/conical indenter penetrating with
the increase of applied load exhibits spherical symmetry, which resembles the plastic region near an expand-
ing spherical cavity in an elastic–plastic solid. Subsequently, Hill�s (1950) solution for the expansion of a
spherical shell of an elastic-perfectly plastic material under an internal pressure was adopted in developing
the afore-mentioned expanding cavity model.

To develop ECMs for elastic strain-hardening materials, it is assumed that the volume of the material
displaced by the indenter is accommodated by the radial expansion of the hemispherical core, as was done
in Johnson (1970). For conical indenters (see Fig. 1(a)), this volume conservation gives
pa2 cot ada ¼ 2pa2 dujr¼a; ð11Þ
where a is the radius of the hemispherical hydrostatic core (which is also the radius of the projected area of
the indentation), u is the radial displacement, a is the half included angle of the conical indenter (see Fig.
1(a)). For spherical indenters (see Fig. 1(b)), the assumed conservation of volume of the core yields
pa2 dh ¼ 2pa2 dujr¼a; ð12Þ
where h is the indentation depth satisfying h ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2

p
, with R(>a) being the radius of the spherical

indenter. Since the left-hand side of Eq. (12) represents the differentiation (increment) of the volume dis-
placed by the indenter tip, which is a spherical cap in contact with the indented material, the fact that plastic
deformation starts only at a finite value of a in a spherical indentation (e.g., Tabor, 1986), which differs
from that in a conical indentation with a sharp indenter where plastic flow occurs instantaneously upon
loading, has been automatically incorporated in Eq. (12) (and thus in the new ECM for spherical
indentations).
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From Eq. (4e) (or Eq. (8e)) it follows that the rate of change of the radial displacement at any r in the
plastic zone (i.e., a 6 r 6 rc here) with respect to rc is
du
drc

¼ 3

2

ry

E
r2c
r2
; ð13Þ
which gives
dujr¼a ¼
3

2

ry

E
r2c
a2

drc. ð14Þ
Note that ri = a in the current application of the solutions presented in Section 2. The result given in Eq.
(14) holds for both the elastic power-law hardening and the elastic linear-hardening materials, since the
expression for the radial displacement u is the same in both cases, as noted earlier. Using Eq. (14) in
Eq. (11) leads to, for conical indenters,
3r2c drc ¼
E cot a
ry

a2 da. ð15Þ
A direct integration of Eq. (15) yields, noting that rc ! 0 as a ! 0 (i.e., no indentation deformation),
rc
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cot a. ð16Þ
Substituting Eq. (16) into Eq. (7), with pi there replaced now by p, leads to
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ð17Þ
for elastic power-law hardening materials, and inserting Eq. (16) into Eq. (10) gives
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for elastic linear-hardening materials. Note that p in Eqs. (17) and (18) is the hydrostatic pressure satisfying
rrrjr=a = �p and represents, in an approximate manner, the mean contact pressure (i.e., applied load/
projected area of the indentation = P/(pa2)), thereby measuring the hardness (H) of the indented material
(i.e., p = H) (Tabor, 1986). When n ! 0, i.e., for elastic-perfectly plastic materials, Eq. (17) reduces to, with
the use of l�Hôpital�s rule,
p
ry

¼ 2

3
1þ ln

1

3

E
ry

cot a

� �� �
. ð19Þ
Also, when Ep = 0, i.e., for elastic-perfectly plastic materials, Eq. (18) reduces to Eq. (19). Eq. (19) is the
same as that obtained by Johnson (1970) (see Eq. (1)) for conical indentations of incompressible elastic-

perfectly plastic materials, thereby verifying the newly derived ECM models for conical indentations.
Clearly, Eqs. (17)–(19) show that the indentation hardness H (=p) is independent of the indentation size
a (and any other length parameter), indicating that the indentation process by a conical indenter is geomet-
rically self-similar. This self-similarity unique to conical (and pyramidal) indenters is also known to exist for
elastic solids (e.g., Tabor, 1986). However, the dependence of the indentation hardness on the shape of the
indenter, as reflected through a, can be readily seen from Eqs. (17)–(19) for both elastic-perfectly plastic and
elastic strain-hardening materials. This dependence of hardness on the indenter cone angle has also been
demonstrated experimentally (e.g., Atkins and Tabor, 1965) and computationally (e.g., Cheng and Li,
2000), which implies that indentation hardness is not an absolute material property and therefore the cone
angle associated with its determination needs to be specified.
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Similarly, using Eq. (14) in Eq. (12) yields, for spherical indenters,
3r2cdrc ¼
E
ry

1

R
a3 da; ð20Þ
where use has been made of Taylor�s expansion:
dh ¼ adaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2

p ¼ a
R
da 1þ 1

2
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R2
þ � � �

� �
; ð21Þ
with all non-linear terms truncated. This approximation should work well for spherical indentations with
small a/R (and therefore small indentation depth h). A direct integration of Eq. (20) yields, noting that
rc ! 0 as a ! 0,
rc
a

� �3

¼ 1

4

E
ry

a
R
. ð22Þ
Substituting Eq. (22) into Eq. (7) then leads to
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for elastic power-law hardening materials, and inserting Eq. (22) into Eq. (10) gives
p
ry

¼ 2

3
1þ Ep

E
1

4

E
ry

a
R
� 1

� �
þ 1� Ep

E

� �
ln

1

4

E
ry

a
R

� �� �
ð24Þ
for elastic linear-hardening materials. For elastic-perfectly plastic materials, both Eqs. (23) and (24) reduce
to, by letting n ! 0 and Ep = 0 respectively,
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ry
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1þ ln

1

4

E
ry

a
R
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ð25Þ
for spherical indentations. From Eqs. (23)–(25) it is clear that the hardness H(=p) now depends on the
indentation size a and the radius of the indenter R, implying that the indentation process by a spherical
indenter (with fixed R and changing a) is not self-similar even in the context of the linearized analysis pre-
sented here. Again, for elastic solids the dependence of hardness on R has been analytically shown (e.g.,
Tabor, 1986). This dependence of indentation hardness on indenter geometry exhibited by spherical inden-
tations of both elastic and elastic–plastic materials supplements what is observed for conical indentations
discussed above and, once again, indicates that indentation hardness, defined as the ratio of applied load to
projected area of the indentation, is not an absolute material property.

Eqs. (17) and (23) represent an expanding cavity model (ECM) for elastic power-law hardening materials,
whereas Eqs. (18) and (24) constitute a second ECM for elastic linear-hardening materials. Clearly, Eqs.
(17), (18), (23) and (24) show that for a given indenter geometry the indentation hardness depends on E,
ry and n or Ep. These two ECMs can be utilized to estimate the hardness of a material with strain-hardening
characteristics, which supplement the existing ECM for elastic-perfectly plastic materials developed by
Johnson (1970).

On the other hand, Johnson�s ECM in its original form is known to predict lower hardness values than
experimentally measured ones (e.g., Studman et al., 1977). As a result, attempts have been made to modify
the original ECM of Johnson (1970). One modification was suggested by Johnson himself (Johnson, 1985)
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through adding 2ry/3 to the indentation pressure p(=H). However, no detail was provided in Johnson
(1985) regarding how the correction term was mathematically obtained, which makes it difficult for one
to extend Johnson�s modification for elastic-perfectly plastic materials to elastic strain-hardening materials.
In comparison, the modification by Studman et al. (1977), which considers the variations in the stresses in
the hemispherical core beneath the indenter from hydrostatic to other values that obey the von Mises yield
condition, appears to be detailed, simple and also leads to better predictions (i.e., closer to the experimental
data) than the original ECM of Johnson does. This modification, being also approximate (and thus non-
unique), was motivated by the need to better correlate the predicted hardness values with experimentally
measured ones and was based on the observation that there exists a jump (step-discontinuity) in
re(=rhh � rrr) from r = a�, where re = 0 due to the assumed hydrostatic stress state with
rhh = rrr = ruu = �p, to r = a+ where re = ry for elastic-perfectly plastic materials. Hence, the idea used
in Studman et al. (1977) to improve Johnson�s ECM for elastic-perfectly plastic materials is adopted to
modify the two ECMs for elastic strain-hardening materials developed above. The modification procedure
follows that used in Studman et al. (1977) and is therefore excluded here. The major difference is that ry in
the von Mises yield condition jrhhjr=a � rrrjr=aj = ry used there is now replaced by rejr=a (i.e., the effective
stress on the interface r = a). Owing to the strain-hardening effect, there is rejr=a P ry, where the equality
holds only when rc = a. The results after the modification are listed below.

For elastic power-law hardening materials, the modified formulas are
H
ry

¼ 2

3
1� 1

n

� �
þ 3

4
þ 1

n

� �
1

3

E
ry

cot a

� �n� 	
ð26Þ
for conical indentations, and
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for spherical indentations. Eqs. (26) and (27) are obtained from modifying Eqs. (17) and (23), respectively.
For elastic linear-hardening materials, the modified formulas are
H
ry

¼ 2

3

7

4
þ 7

4

Ep

E
1

3

E
ry

cot a� 1

� �
þ 1� Ep

E

� �
ln

1

3

E
ry

cot a

� �� �
ð28Þ
for conical indentations, and
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for spherical indentations. Eqs. (28) and (29) are obtained from modifying Eqs. (18) and (24), respectively.
For elastic-perfectly plastic materials, both Eqs. (26) and (28) reduce to, by letting n ! 0 and Ep = 0

respectively,
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for conical indentations, and both Eqs. (27) and (29) reduce to, by letting n ! 0 and Ep = 0 respectively,
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for spherical indentations. Eq. (30) is the same as that given in Studman et al. (1977) (see Eq. (13) there) for
conical indentations of elastic-perfectly plastic materials, thereby verifying the modified ECM models for
strain-hardening materials obtained here in Eqs. (26)–(29). These newly derived formulas will be applied
in the next section to analyze sample cases.
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4. Numerical results

To illustrate the two ECMs derived in the preceding section, a parametric study has been conducted by
directly using Eqs. (26) and (28) for conical indentations and Eqs. (27) and (29) for spherical indentations of
elastic strain-hardening materials. The numerical results are presented below in this section.

Fig. 2 shows how the hardness (H) of an elastic power-law hardening material changes with n and E

when a conical indenter with a = 70.3� is employed, while Fig. 3 illustrates how the hardness of an elastic
linear-hardening material varies with Ep and E when the same conical indenter is used. The numerical val-
ues of the former are based on Eq. (26), whereas those of the latter on Eq. (28). It is observed from Figs. 2
and 3 that the increase ofH with E exhibited by the elastic-perfectly plastic material (i.e., the solid lines with
n = 0 or Ep/E = 0), as predicted by the modified ECMmodel given in Studman et al. (1977) (see Eq. (30)), is
also demonstrated by both the elastic power-law hardening and the elastic linear-hardening materials, as
predicted by the two newly developed models. In addition, H is seen to increase as n or Ep increases. That
is, the higher the strain-hardening level is, the larger the hardness is.

The effects of a on H, as predicted by the two new models for conical indentations, are shown, respec-
tively, in Figs. 4 and 5 for the elastic power-law hardening material and the elastic linear-hardening
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material. For both types of the strain-hardening materials, it is seen that the use of a conical indenter with
smaller values of a (i.e., a sharper indenter) leads to larger values of H. For example, when E/ry = 100, H/
ry decreases from 4.3 to 2.8 for the power-law hardening material (with n = 0.2) and from 5.1 to 2.8 for the
linear-hardening material (with Ep/E = 0.1) as a changes from 60� to 80�. This quantitatively shows that the
indentation hardness is indeed strongly dependent on the cone angle a, as was revealed experimentally by
Atkins and Tabor (1965) and computationally by Cheng and Li (2000).

Figs. 6 and 7 illustrate how H varies with a/R for spherical indentations of elastic power-law hardening
and elastic linear-hardening materials, respectively. The numerical results shown in these two figures are
based on Eqs. (27) and (29). From Figs. 6(a,b) and 7(a,b) it is seen that when the indented material is soft
(with E/ry 6 100, i.e., a large value of ry) and the indentation depth is small (with a/R < 0.1, i.e., a small
value of a), the hardness is insignificantly affected by the strain-hardening behavior. This is due to the dom-
inance of the Hertzian elastic contact, since the finite value of a required for initiating plastic deformations
under the given conditions, as noted earlier (near Eq. (2)), may not have been reached. However, when the
indented material is stiff (with E/ry > 100, i.e., a small value of ry) and/or the indentation depth is large
(i.e., with a large value of a), plastic deformations become significant and the strain-hardening behavior
of the material has a large effect on the hardness, as shown in Figs. 6 and 7.
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The variations of H with E for both the elastic power-law hardening and the elastic linear-hardening
materials in spherical indentations are illustrated in Fig. 8. It is observed from Fig. 8 that for all of the
spherical indentations (with different values of a/R) considered the higher E is, the larger H is.

Clearly, Figs. 6–8 quantitatively show that the indentation hardness H strongly depends on the spherical
indenter geometry through a/R, which is also revealed by the finite element results of Park and Pharr
(2004).

A comparison between the newly developed analytical model and the finite element (FE) simulation of
Park and Pharr (2004) for spherical indentations of elastic power-law hardening materials is shown in Fig.
9, where E* � E/(1 � m2). As illustrated in Fig. 9, when the indentation depth is small (with E*a/(ryR) < 10,
i.e., a small value of a and/or a large value of ry), the hardness, according to the new model (see Eq. (27)),
does not appear to vary with the strain-hardening exponent n, which is also revealed by the FE results of
Park and Pharr (2004). The reason for this is that the small plastic deformation zone induced by the small-
depth indentation with the value of a above but close to the required critical value for initiating plastic
deformations is constrained by the surrounding material undergoing elastic deformations, as was also
observed by Park and Pharr (2004). When the indentation depth (and thus the value of a) is large (i.e., with
extensive plastic deformations), however, the hardness predicted by the new model depends strongly on n,
as shown in Figs. 6 and 9. Also, it can be seen from Fig. 9 that when the material is stiff enough (with E*a/
(ryR) > 20) the agreement between the new model and the FE model is fairly good, while for the material
with E*a/(ry R) < 20 a sizable discrepancy exists between the two models. This deviation is believed to arise
mainly from two factors: one is the assumed incompressibility (i.e., Poisson� ratio m = 0.5) in the new model,
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as opposed to the compressibility (with m = 0.3) used in Park and Pharr (2004); the other is the use of a finite
cylinder with traction-free and zero-displacement boundary conditions to represent the indented material in
the FE model of Park and Pharr (2004), compared with the infinite half-space with the top surface being not
traction-free involved in developing the ECM. Nevertheless, the trends predicted by the new analytical
model are seen to agree with those by the FE model of Park and Pharr (2004), thereby supporting the
new model.
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5. Summary

Two expanding cavity models (ECMs)—one for elastic power-law hardening materials and the other for
elastic linear-hardening materials—are developed using two elastic–plastic solutions for internally pressur-
ized thick-walled spherical shells of strain-hardening materials. Both conical and spherical indentations are
considered in the formulation. The closed-form formulas derived show that for a given indenter geometry
indentation hardness depends on Young�s modulus, yield stress and strain-hardening index of the indented
material. It is seen that the two new models reduce to Johnson�s ECM for elastic-perfectly plastic materials
when there is no strain-hardening.

To illustrate the two newly developed models, a parametric study is conducted. The numerical results
reveal that the hardness of the indented material increases with the Young�s modulus and strain-hardening
level of the material. It is also found that for conical indentations the hardness depends on the sharpness of
the conical indenter: the sharper the indenter is, the larger the hardness is. For spherical indentations the
indentation hardness is seen to be significantly affected by the strain-hardening level when the indented
material is stiff (i.e., with a large ratio of Young�s modulus to yield stress) and/or the indentation depth
is large. When the indentation depth is small (i.e., there is little or no plastic deformation induced by the
spherical indenter), the hardness appears to be independent of the strain-hardening level, which agrees with
what was shown by the FE results of Park and Pharr (2004).
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Appendix A

The solution for an internally pressurized spherical shell of the elastic linear-hardening material defined
in Eq. (3) is derived here. The derivation follows the procedure used in Gao and Wei (1991) (see also Gao,
2003) for the spherical shell of the elastic power-law hardening material defined in Eq. (2).
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Based on the assumptions of material incompressibility and small deformations, the governing equations
in the plastic region of the shell wall (ri 6 r 6 rc), which incorporate Hencky�s deformation theory and von
Mises� yield criterion, include (Gao and Wei, 1991; Gao, 1994), in a stress formulation,
rhh � rrr ¼
1

2
r
drrr

dr
; ðA:1Þ

re ¼ ry þ Epðee � eyÞ; ðA:2Þ

ehh ¼ euu ¼ 1

2

ee
re

rhh � rrrð Þ; err ¼ � ee
re

rhh � rrrð Þ; ðA:3Þ

re ¼ rhh � rrr; ðA:4Þ

r
dehh
dr

¼ err � ehh. ðA:5Þ
The boundary conditions are
r j ¼ �p ; r j ¼ �p ; r j ¼ r . ðA:6a; b; cÞ
rr r¼ri i rr r¼rc c e r¼rc y

Eqs. (A.1)–(A.6a,b,c) define the boundary-value problem (BVP) for determining the stress and strain
components in the plastic region ðri 6 r 6 rcÞ. This BVP can be solved as follows.

Using Eq. (A.4) in Eq. (A.3) gives
ehh ¼ euu ¼ 1
ee; err ¼ �ee. ðA:7Þ
2

Inserting Eq. (A.7) into Eq. (A.5) then results in
dee
ee

¼ �3
dr
r
; ðA:8Þ
which can be integrated to obtain
ee ¼
c
r3
; ðA:9Þ
where c is an integration constant. Substituting Eq. (A.9) into Eq. (A.2) yields
re ¼ ry þ Ep
c
r3

� ey
� �

. ðA:10Þ
The use of Eq. (A.10) in Eq. (A.6c) leads to
c ¼ ry

E
r3c . ðA:11Þ
Inserting Eqs. (A.10), (A.11) and (A.4) into Eq. (A.1) then gives
drrr ¼ 2ry 1þ Ep

E
r3c
r3

� 1

� �� �
dr
r
. ðA:12Þ
Integrating Eq. (A.12) with respect to r from rc to r results in, with the use of Eq. (A.6b),
rrr ¼ �pc þ 2ry 1� Ep

E

� �
ln

r
rc
þ 2ry

3

Ep

E
1� r3c

r3

� �
; ðA:13Þ
where pc, as first introduced in Eq. (A.6b), is the pressure acting on the elastic–plastic interface r = rc. The
relation between pc and rc is to be determined from the solution in the elastic region (see Gao andWei, 1991).
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The stress components in the elastic region of the shell wall (rc 6 r 6 ro), which can be reviewed as a
thick-walled spherical shell of the inner radius rc and the outer radius ro subjected to the internal pressure
pc, are given by Lamé�s solution listed in Eq. (6a,b) (e.g., Gao and Wei, 1991). Hence, using Eqs. (6b), (A.4)
and (A.6b) in Eq. (A.6c) yields
pc ¼
2ry

3
1� r3c

r3o

� �
. ðA:14Þ
Substituting Eq. (A.14) into Eq. (A.13) gives
rrr ¼ 2ry 1� Ep

E

� �
ln

r
rc
þ 2ry

3

Ep

E
1� r3c

r3

� �
� 2ry

3
1� r3c

r3o

� �
. ðA:15Þ
The use of Eq. (A.15) in Eq. (A.1) leads to
rhh ¼ 2ry 1� Ep

E

� �
ln

r
rc
� ry

3

Ep

E
1� r3c

r3

� �
þ ry

3
1þ 2r3c

r3o

� �
¼ ruu. ðA:16Þ
Using Eq. (A.15) in Eq. (A.6a), which is the only remaining boundary condition, results in
pi
ry

¼ 2

3
1� r3c

r3o

� �
� Ep

E
1� r3c

r3i

� �� �
þ 2 1� Ep

E

� �
ln
rc
ri
; ðA:17Þ
which will be solved numerically to obtain rc for given loading (pi), material properties (E,Ep,ry) and shell
geometry (ri, ro).

Next, substituting Eqs. (A.9) and (A.11) into Eq. (A.7) gives the strain components as
ehh ¼ euu ¼ 1

2

ry

E
r3c
r3
; err ¼ � ry

E
r3c
r3
. ðA:18Þ
Then, using the geometrical equations given by
ehh ¼ euu ¼ u
r
; err ¼

du
dr

; ðA:19Þ
the only non-zero (radial) displacement, u, will be readily obtained from Eqs. (A.18) and (A.19) as
u ¼ ry

2E
r3c
r2
. ðA:20Þ
Eqs. (A.15)–(A.18) and (A.20) provide the complete solution for the plastic region (ri 6 r 6 rc) in the wall of
the spherical shell, which are listed in Eqs. (8a–e) and 9.

It should be pointed out that a solution for the same problem was furnished, without detailed deriva-
tions, in Mendelson (1968) by regarding the material as compressible. When Poisson�s ratio equals 0.5, that
solution recovers Eqs. (A.15) and (A.17), but it cannot recover Eq. (A.16). This necessitates the inclusion of
the detailed derivation of the present solution here.
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